Homepage
           Company
           Haccp
           Infestation
                     Cockroaches
                     Rats
                     Ants
                     Termites
                     Mites
                     woodworm
                     Mosquitos
                     Ticks
                     Fleas
                     Pine Tree Catterpillar
                     Outlines
                     Woodlouse
                     Peixinho Prata
                     Others
           Indicated Seasons
           Deservagem
           Monda Quimica
           Armadinhas para insectos
           Estimate
           Localization
           Contacts
  News

    New Prague:
      Palm Weevil 

   ANTS
Formigas

Ants are social insects of the family Formicidae, and along with the related wasps and bees, they belong to the order Hymenoptera. Ants evolved from wasp-like ancestors in the mid-Cretaceous period between 110 and 130 million years ago and diversified after the rise of flowering plants. Today, more than 12,000 species are classified with upper estimates of about 14,000 species. They are easily identified by their elbowed antennae and a distinctive node-like structure that forms a slender waist.

Ants form colonies that range in size from a few dozen predatory individuals living in small natural cavities to highly organised colonies which may occupy large territories and consist of millions of individuals. These larger colonies consist mostly of sterile wingless females forming castes of "workers", "soldiers", or other specialised groups. Nearly all ant colonies also have some fertile males called "drones" and one or more fertile females called "queens". The colonies are sometimes described as superorganisms because the ants appear to operate as a unified entity, collectively working together to support the colony.
Ants have colonised almost every landmass on Earth. The only places lacking indigenous ants are Antarctica and certain remote or inhospitable islands. Ants thrive in most ecosystems, and may form 15–25% of the terrestrial animal biomass.Their success has been attributed to their social organisation and their ability to modify habitats, tap resources, and defend themselves. Their long co-evolution with other species has led to mimetic, commensal, parasitic, and mutualistic relationships
Ant societies have division of labour, communication between individuals, and an ability to solve complex problems. These parallels with human societies have long been an inspiration and subject of study.

Many human cultures make use of ants in cuisine, medication and rituals. Some species are valued in their role as biological pest control agents.However, their ability to exploit resources brings ants into conflict with humans, as they can damage crops and invade buildings. Some species, such as the red imported fire ant, are regarded as invasive species, since they have established themselves in new areas where they have been accidentally introduced.

Etymology
The word ant is derived from ante of Middle English which is derived from æmette of Old English and is related to the Old High German āmeiza, hence the modern German Ameise. All of these words come from West Germanic *amaitjo, and the original meaning of the word was "the biter" (from Proto-Germanic *ai-, "off, away" + *mait- "cut").The family name Formicidae is derived from the Latin formīca ("ant") from which the words in other Romance languages such as the Portuguese formiga, Spanish hormiga, Romanian furnică and French fourmi are derived.

Distribution and diversity
Ants are found on all continents except Antarctica and only a few large islands such as Greenland, Iceland, parts of Polynesia and the Hawaiian Islands lack native ant species.Ants occupy a wide range of ecological niches, and are able to exploit a wide range of food resources either as direct or indirect herbivores, predators and scavengers. Most species are omnivorous generalists but a few are specialist feeders. Their ecological dominance may be measured by their biomass, and estimates in different environments suggest that they contribute 15–20% (on average and nearly 25% in the tropics) of the total terrestrial animal biomass, which exceeds that of the vertebrates.

Region 

Number of  species

Neotropics

2162

Nearctic

580

Europe

180

Africa

2500

Asia

2080

Melanesia

275

Australia

985

Polynesia

42

Ants range in size from 0.75 to 52 millimetres (0.030–2.0 in). Their colours vary; most are red or black, green is less common, and some tropical species have a metallic lustre. More than 12,000 species are currently known (with upper estimates of about 14,000), with the greatest diversity in the tropics. Taxonomic studies continue to resolve the classification and systematics of ants. Online databases of ant species, including AntBase and the Hymenoptera Name Server, help to keep track of the known and newly described species.The relative ease with which ants can be sampled and studied in ecosystems has made them useful as indicator species in biodiversity studies.

Development and reproduction
Meat eater ant nest during swarming

The life of an ant starts from an egg. If the egg is fertilised, the progeny will be female (diploid); if not, it will be male (haploid). Ants develop by complete metamorphosis with the larval stages passing through a pupal stage before emerging as an adult. The larva is largely immobile and is fed and cared for by workers. Food is given to the larvae by trophallaxis, a process in which an ant regurgitates liquid food held in its crop. This is also how adults share food, stored in the "social stomach", among themselves. Larvae may also be provided with solid food such as trophic eggs, pieces of prey and seeds brought back by foraging workers and may even be transported directly to captured prey in some species. The larvae grow through a series of moults and enter the pupal stage. The pupa has the appendages free and not fused to the body as in a butterfly pupa.The differentiation into queens and workers (which are both female), and different castes of workers (when they exist), is determined by the nutrition the larvae obtain. Larvae and pupae need to be kept at fairly constant temperatures to ensure proper development, and so are often moved around the various brood chambers within the colony.

A new worker spends the first few days of its adult life caring for the queen and young. It then graduates to digging and other nest work, and later to defending the nest and foraging. These changes are sometimes fairly sudden, and define what are called temporal castes. An explanation for the sequence is suggested by the high casualties involved in foraging, making it an acceptable risk only for ants that are older and are likely to die soon of natural causes.

Most ant species have a system in which only the queen and breeding females have the ability to mate. Contrary to popular belief, some ant nests have multiple queens while others can exist without queens. Workers with the ability to reproduce are called "gamergates" and colonies that lack queens are then called gamergate colonies; colonies with queens are said to be queen-right. The winged male ants, called drones, emerge from pupae along with the breeding females (although some species, like army ants, have wingless queens), and do nothing in life except eat and mate. During the short breeding period, the reproductives, excluding the colony queen, are carried outside where other colonies of similar species are doing the same. Then, all the winged breeding ants take flight. Mating occurs in flight and the males die shortly afterwards. Females of some species mate with multiple males. Mated females then seek a suitable place to begin a colony. There, they break off their wings and begin to lay and care for eggs. The females store the sperm they obtain during their nuptial flight to selectively fertilise future eggs. The first workers to hatch are weak and smaller than later workers, but they begin to serve the colony immediately. They enlarge the nest, forage for food and care for the other eggs. This is how new colonies start in most species. Species that have multiple queens may have a queen leaving the nest along with some workers to found a colony at a new site,a process akin to swarming in honeybees.

Behaviour and ecology - Communication
Weaver ants collaborating to dismember a red ant (the two at the extremities are pulling the red ant, while the middle one cuts the red ant until it snaps)

Ants communicate with each other using pheromones. These chemical signals are more developed in ants than in other hymenopteran groups. Like other insects, ants perceive smells with their long, thin and mobile antennae. The paired antennae provide information about the direction and intensity of scents. Since most ants live on the ground, they use the soil surface to leave pheromone trails that can be followed by other ants. In species that forage in groups, a forager that finds food marks a trail on the way back to the colony; this trail is followed by other ants, these ants then reinforce the trail when they head back with food to the colony. When the food source is exhausted, no new trails are marked by returning ants and the scent slowly dissipates. This behaviour helps ants deal with changes in their environment. For instance, when an established path to a food source is blocked by an obstacle, the foragers leave the path to explore new routes. If an ant is successful, it leaves a new trail marking the shortest route on its return. Successful trails are followed by more ants, reinforcing better routes and gradually finding the best path.

Ants use pheromones for more than just making trails. A crushed ant emits an alarm pheromone that sends nearby ants into an attack frenzy and attracts more ants from further away. Several ant species even use "propaganda pheromones" to confuse enemy ants and make them fight among themselves. Pheromones are produced by a wide range of structures including Dufour

  
Peste Control do Algarve, Lda.   (+351) 289 395 785
NETEURO©2009